



## **GENERAL INSTRUCTIONS:-**1. All questions are compulsory.

## **CODE:- AG-13**

- 2. The question paper consists of 34 questions divided into four section A,B,C and D. Section – A comprises of 8 question of 1 mark each Section – B comprises of 6 questions of 2 marks each. Section – comprises of 10 questions of 3 marks each and Section comprises of 10 questions of 4 marks each.
- 3. Question numbers 1 to 8 in Sections A are multiple choic questions where you are to select one correct option out of the give four.
- 4. There is no overall choice. However, internal choice has bee provided in 1 question of two marks, 3 questions of three marks eac and 2 questions of four mark each. You have to attempt only one the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. Please check that this question paper contains 6 printed pages.

| <b>N</b> | IA THEMA TICS                                    | CLASS X                | (SA-1)                              |
|----------|--------------------------------------------------|------------------------|-------------------------------------|
| T        | ime : 3 to $\frac{1}{4}$ Hours                   |                        | Maximum Marks : 90                  |
|          | SUMMA                                            | ATIVE ASSESS           | NENT –I (2013)                      |
|          |                                                  | SECTION A              |                                     |
| Q        | .1 The number $\frac{3-\sqrt{3}}{3+\sqrt{3}}$ is |                        |                                     |
|          | (A) rational (B) irrati                          | ional (C) Both (D) Car | n't say <mark>Ans. B ; after</mark> |
|          | rationalisation $2-\sqrt{3}$                     |                        |                                     |

| Q.2        | If $\sin 3\theta = \cos(\theta - 6^0)$ , where $(3\theta)$ and $(\theta - 6^0)$ are both acute angles,                          |  |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|            | then the value of $\theta$ is                                                                                                   |  |  |  |  |  |  |  |
|            | (A) $18^{\circ}$ (B) $24^{\circ}$ (C) $36^{\circ}$ (D) $30^{\circ}$ Ans. B:                                                     |  |  |  |  |  |  |  |
|            | $90 - 3\theta = \theta - 6 \Longrightarrow 4\theta = 96; \theta = 24$                                                           |  |  |  |  |  |  |  |
| Q.3        | $x^{3} + 2x^{2} + ax + b$ is exactly divisible by $(x^{2} - 1)$ . Then the value of                                             |  |  |  |  |  |  |  |
|            | 'a' and 'b' are                                                                                                                 |  |  |  |  |  |  |  |
|            | (A) $a = -1, b = -2$ (B) $a = 1, b = 2$ (C) $a = -1, b = 2$ (D) $a = 1, b = -2$ Ans. a:                                         |  |  |  |  |  |  |  |
|            | a = -1 b = -2                                                                                                                   |  |  |  |  |  |  |  |
| <b>Q.4</b> | The median of the scores $13,23,12,18,26,19,14,25,11$ is                                                                        |  |  |  |  |  |  |  |
| 0.5        | (A) 14 (B) 18 (C) 19 (D) 23 Alls. B :                                                                                           |  |  |  |  |  |  |  |
| Q.3        | $\cos^2 \theta$ = 3 then $\theta$ =                                                                                             |  |  |  |  |  |  |  |
|            | If $\theta$ is acute and $\frac{1}{\cot^2 \theta - \cos^2 \theta} = 5$ , then $\theta = 1$                                      |  |  |  |  |  |  |  |
|            | (A) $60^{\circ}$ (B) $30^{\circ}$ (C) $90^{\circ}$ (D) $45^{\circ}$ Ans. A :                                                    |  |  |  |  |  |  |  |
| Q.6        | For what value of p does the system of equation                                                                                 |  |  |  |  |  |  |  |
| _          | 2x - py = 0.3x + 4y = 0 has non zero solution 2                                                                                 |  |  |  |  |  |  |  |
|            |                                                                                                                                 |  |  |  |  |  |  |  |
|            | (A) $p = -\frac{8}{2}$ (D) $p = -\frac{4}{2}$ (D) $p = -\frac{4}{2}$                                                            |  |  |  |  |  |  |  |
|            | (A) $p = -0$ (B) $p = -\frac{1}{3}$ (C) $p = -\frac{1}{3}$ (D) $r = -\frac{1}{3}$ (D) $r = -\frac{1}{3}$ (D) $r = -\frac{1}{3}$ |  |  |  |  |  |  |  |
| <b>Q.7</b> | $\Delta ABC \sim \Delta PQR$ . If AB = 6cm, BC = 4 cm, AC = 8cm, PR = 6cm,                                                      |  |  |  |  |  |  |  |
|            | then $PO + OR =$                                                                                                                |  |  |  |  |  |  |  |
|            | (A) 8cm (B) 10cm (C) 7.5 cm (D) 9 cm Ans. C :                                                                                   |  |  |  |  |  |  |  |
| Q.8        | If $x = 2\sin^2\theta$ , $y = 2\cos^2\theta + 1$ then the value of $x + y$ is                                                   |  |  |  |  |  |  |  |
|            |                                                                                                                                 |  |  |  |  |  |  |  |
|            | (A) 2 (B) 3 (C) $\frac{1}{2}$ (d) 1 Ans. b :                                                                                    |  |  |  |  |  |  |  |
|            | SECTION B                                                                                                                       |  |  |  |  |  |  |  |
| Q.9        | If one zero of polynomial $3r^2 - 8r + 2k + 1$ is seven times the                                                               |  |  |  |  |  |  |  |
| ł          | If one zero of polynomial $J_{\lambda} - o_{\lambda} + 2\kappa + 1$ is seven times the                                          |  |  |  |  |  |  |  |

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)





**Target Mathematics by- Agyat Gupta ;** Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

 Target Mathematics by- Agyat Gupta ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

|      | to sum of the squares of its sides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ans; median = 20 and new median = $65/2$ ie = $32 \cdot 5$                                                                                                     |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q.22 | In $AABC, AD \mid BC$ and BD - $\frac{1}{CD}$ . Prove that                                                                                                     |  |  |  |
|      | In a triangle ABC, D is the mid-point of BC and AE $\perp$ BC. Prove that :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | In $\Delta HDC$ , $HD \pm DC$ and $BD = \frac{3}{3}$                                                                                                           |  |  |  |
|      | $AB^2 + AC^2 = 2AD^2 + \frac{1}{2}BC^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | $2CA^2 = 2AB^2 + BC^2$                                                                                                                                         |  |  |  |
| Q.16 | In a morning walk three persons step off together, their steps measure 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q.23 | In an equilateral triangle ABC, the side BC is trisected at D. Prove that 9                                                                                    |  |  |  |
|      | cm, 85 cm and 90 cm respectively. What is the minimum distance each should walk so that they can cover the distance in complete steps ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | $AD^2 = 7AB^2$ Sol. ABC be can equilateral triangle and D be point on                                                                                          |  |  |  |
|      | Ans.LCM of 80 cm , 85 cm , 90 cm ie $12240cm = 122m40cm$<br>OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                                                |  |  |  |
|      | Show that cube of any positive integer is of the form $4m$ or $4m + 1$ or $4m + 3$ where m is a positive integer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                                                                                                                                                                |  |  |  |
| Q.17 | $\frac{1}{8} = \frac{1}{8} = \frac{1}$ |      | BC such that BC = $\frac{1}{3}$ BC (Given) B D E O Draw                                                                                                        |  |  |  |
|      | Prove that: $\sqrt{\frac{\sec A + 1}{\sec A + 1}} + \sqrt{\frac{\sec A + 1}{\sec A - 1}} = 2 \cos ecA$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | $AE \perp BC$ , Join AD.BE = EC (Altitude drown from any vertex of an                                                                                          |  |  |  |
| Q.18 | Ritu can row downstream 20 km in 2 hrs. and upstream 4 km in 2 hrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | equilateral triangle bisects the opposite side)So, $BE = EC =$                                                                                                 |  |  |  |
|      | Find the speed of rowing in still water and the speed of the current.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $\frac{BC}{D}$ In $\triangle ABCAB^2 = AE^2 + EB^2$ (i) $AD^2 = AE^2 + ED^2$ (ii) From (i)                                                                     |  |  |  |
|      | Ans. still water = 6 km/hr speed of current = 4 km/hr $OP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                                                                                                                |  |  |  |
|      | In a competitive examination, one mark is awarded for each correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | and (ii)AB <sup>2</sup> = AD <sup>2</sup> - ED <sup>2</sup> + EB <sup>2</sup> .AB <sup>2</sup> = AD <sup>2</sup> - $\frac{BC^2}{36} + \frac{BC^2}{4}$ (:. BD + |  |  |  |
|      | answer while <sup>1</sup> / <sub>2</sub> mark is deducted for each wrong answer. Sheela answered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | BC BC BC BC $BC^2$ $BC^2$                                                                                                                                      |  |  |  |
|      | correctly? Ans. 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | DE $=\frac{BC}{2} \Rightarrow \frac{BC}{3} + DE = \frac{BC}{2} \Rightarrow DE = \frac{BC}{6} AB^2 + \frac{BC}{36} - \frac{BC}{4} = AD^2$                       |  |  |  |
| Q.19 | Mean of the following data is 21.5. Find the missing value 'k'. Ans. $K = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | $BC$ $AB^2 AB^2$                                                                                                                                               |  |  |  |
|      | X 5 15 25 35 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | $(\therefore EB = \frac{DC}{2})$ $AB^2 + \frac{AD}{36} - \frac{AD}{4} = AD^2$                                                                                  |  |  |  |
|      | If         6         4         3         k         2           Th         HOE 8 LONA 5:         1         22.8 264         1         Nii         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                                                                |  |  |  |
| Q.20 | first number is divided by 2 the quotient is 33. Find the second number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | $(::AB = BC) \frac{36AB^2 + AB^2 - 9AB^2}{26} = AD^2 \Longrightarrow \frac{28AB^2}{26} = AD^2$                                                                 |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 30 30                                                                                                                                                          |  |  |  |
| Q.21 | Find the median of the following data : $5$ , $17$ , $23$ , $14$ , $29$ , $11$ , $43$ , $13$ , $53$ , $36$ . If $13$ , $23$ is replace by 72, $49$ , what will be the new median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | $7AB^2 = 9AD^2$                                                                                                                                                |  |  |  |
|      | 55, 50. If 15, 25 is replace by $72, 77$ . what will be the new incutalit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                                                                                                                |  |  |  |

 Target Mathematics by- Agyat Gupta ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : 9425109601; 9425110860;9425772164(P)

| Q.24 | If one zero of the polynomial $p(x) = (k^2 + 4)x^2 + 13x + 4k$ is                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                |                         |        | - 4 <i>k</i> is |                      | Y <sub>6</sub> ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------|-------------------------|--------|-----------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | reciprocal of other, then prove that k = 2 . SECTION D                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                |                         |        |                 |                      | P (2,4)<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Q.25 | The mean of the following frequency table is 53.But the frequencies $f_1$ and $f_2$ in the classes 20-40 and 60-80 are missing. Find the missing frequencies. Ans. $f_1=18\& f_2=29$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                |                         |        |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|      | Age (in<br>years)<br>Number of<br>people                                                                                                                                             | 0-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 20-40 \\ f_1 \end{array}$ | 40-60       21 | 60-80<br>f <sub>2</sub> | 80-100 | Total<br>100    |                      | AB intersects the x-axis at (1, 0) and CD intersects the x-axis at (3, 0) Hence the vertices of the triangle PBD are (2, 4), (1, 0) and (3, 0) . The required region is shaded. Area = $\frac{1}{2} \times 2 \times 4 = 4$ sq unit .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Q.26 | Draw the grap<br>vertices of the<br>and the x-axils<br>.Solution: - La<br>$\times$<br>-4), (1, 0) and<br>straight line.<br>$\times$<br>(3, 0) and (4,<br>a line CD wh                | Provide of $13$ $y_1$ $y_2$ $y_2$ $y_2$ $y_2$ $y_2$ $y_2$ $y_3$ $y_4$ $y_4$ $y_2$ $y_3$ $y_4$ $y_4$ $y_2$ $y_3$ $y_4$ |                                             |                |                         |        |                 | Q.27<br>Q.28<br>Q.29 | Show that: $\frac{\tan^3 \theta}{1 + \tan^2 \theta} + \frac{\cot^3 \theta}{1 + \cot^2 \theta} = \sec \theta \csc \theta - 2\sin \theta \cos \theta$<br>OR<br>Show that: $\frac{1 + \cos \theta + \sin \theta}{1 + \cos \theta - \sin \theta} = \frac{1 + \sin \theta}{\cos \theta}$<br>Prove that $(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 = 7 + \tan^2 \theta + \cot^2 \theta$<br>Determine the value of k so that the following linear equations have<br>no solution: $(3k + 1)x + 3y - 2 = 0 \&$<br>$(k^2 + 1)x + (k - 2)y - 5 = 0$<br>Solution::<br>$\frac{a_1}{a_2} = \frac{3k + 1}{k^2 + 1}, \frac{b_1}{b_2} = \frac{3}{k - 2}, \frac{c_1}{c_2} = \frac{2}{5}$<br>For no solution: $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ |  |  |  |
|      | a line CD which intersect previous line AB. at P (2, 4)                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                |                         |        |                 |                      | $\frac{a_1}{a_2} = \frac{3k+1}{k^2+1}, \frac{b_1}{b_2} = \frac{3}{k-2}, \frac{c_1}{c_2} = \frac{2}{5}$<br>For no solution, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

$$\frac{3k+1}{k^2+1} = \frac{3}{k-2} \neq \frac{2}{2} \quad Now, \frac{3k+1}{k^2+1} = \frac{3}{k-2}$$
Or,  $(k-2) (3k+2) = 3(k^2+1) \text{ Or, } 3k^2 - 5k - 2 = 3k^2 + 3 \text{ Or, } -5k = 5$ 
Or,  $k = -1$ 
O, O ABC is a right triangle, right-angled at C. Let BC = a, CA b, AB = c  
and let p be the length of perpendicular Form C on AB, prove that  
(i) cp = a b(ii)  $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$  Sol. Let CD  $\bot$  AB. Then CD = p  
 $\therefore$  Area of  $\triangle ABC = \frac{1}{2}$  (Base × height)  
 $\frac{1}{2} (AB \times CD) = \frac{1}{2} cp$  Also, Area of  $\triangle ABC = \frac{1}{2} (BC \times AC) = \frac{1}{2} (BC \times AC) = \frac{1}{p^2} - \frac{1}{a^2} + \frac{1}{b^2}$   
 $\therefore$   $\frac{1}{2} cp = \frac{1}{a} ab$   
 $\Rightarrow$   $CP = AB$   
(ii) Since ABC is a right triangle, right angled at C.  
 $\therefore$   $AB^2 = BC^2 + AC^2$   
 $\Rightarrow$   $c^2 = a... + b^2  $\supset \left(\frac{ab}{p}\right)^2 = a^2 + b^2 \left[\because cp = ab \Rightarrow c = \frac{ab}{p}\right]$   
Q.31 If  $2 \cos \theta - \sin \theta = x & \cos \theta - 3 \sin \theta = y$ . prove that  
 $2x^2 + y^2 - 2xy = 5$  ANS:  
 $2\cos \theta - \sin \theta = x$   
 $\cos \theta - 3\sin \theta = y$   
 $(x - y)^2 = x^2 - 2xy + y^2$   
 $= cos^2\theta + 4sin^2\theta + 4cos\thetasin\theta$   
 $= 1 + 3sin^2\theta + 4cos\thetasin\theta + (2cos\theta - sin\theta)^2$   
 $2x^2 - 2xy + y^2 = 1 + 3sin^2\theta + 4cos\thetasin\theta + 4cos^2\theta + sin^2\theta - 4cos\thetasin\theta$   
 $= 4 \sin^2\theta + 4\cos^2\theta + 1$   
 $= 5$   
 $= RHS$   
Q.32 Show that one and only one out of n, n + 3, n + 6, n + 9 is divisible by  
4, where n is any positive integer. OR  
Prove that the product of three consecutive positive integer is divisible by  
 $4$ , where n is any positive integer is divisible by  
 $4$ , where n is any positive integer is divisible by  
 $4$ , where n is any positive integer is divisible by  
 $4$ , where n is any positive integer is divisible by  
 $4$ , where n is any positive integer is divisible by  
 $4$ , where n is any positive integer is divisible by  
 $4$ , where n is any positive integer is divisible by  
 $4$ , where n is any positive integer is divisible by  
 $4$ , where n is any positive integer is divisible by  
 $4$ , where n is any positive integer is divisible by  
 $4$ , where n is an$ 

 Target Mathematics by- Agyat Gupta ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : 9425109601; 9425110860;9425772164(P)

 Target Mathematics by- Agyat Gupta ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

| Q.33 | The distribution below gives the weights of 30 students of a class. Find the                                                                                                              |               |            |                |        |     |   |   |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|----------------|--------|-----|---|---|--|--|--|
|      | mean and the median weight of the students. Ans mean = $57.1$ ; median $56.67$                                                                                                            |               |            |                |        |     |   |   |  |  |  |
|      | C-I 40-45 45-50 50-55 55-60 60-65 65-70                                                                                                                                                   |               |            |                |        |     |   |   |  |  |  |
|      | F                                                                                                                                                                                         | 2             | 3          | 8              | 6      | 6   | 3 | 2 |  |  |  |
| Q.34 | <b>Q.34</b> In right-angled triangle ABC in which $\angle B = 90^\circ$ , if D is the mid-j                                                                                               |               |            |                |        |     |   |   |  |  |  |
|      | BC, prove that $AC^2 = 4AD^2 - 3AB^2$ . ANS:                                                                                                                                              |               |            |                |        |     |   |   |  |  |  |
|      | Δ                                                                                                                                                                                         |               |            |                |        |     |   |   |  |  |  |
|      | Ñ                                                                                                                                                                                         |               |            |                |        |     |   |   |  |  |  |
|      |                                                                                                                                                                                           | $\mathcal{N}$ |            |                |        |     |   |   |  |  |  |
|      | B = D = C                                                                                                                                                                                 |               |            |                |        |     |   |   |  |  |  |
|      |                                                                                                                                                                                           |               |            |                |        |     |   |   |  |  |  |
|      |                                                                                                                                                                                           |               |            |                |        |     |   |   |  |  |  |
|      |                                                                                                                                                                                           |               |            |                |        |     |   |   |  |  |  |
|      | $AC^{2} = AB^{2} + BC^{2}$ $AC^{2} = AB^{2} + 4BD^{2} \qquad [BC = 2 BD]$ $AC^{2} = AB^{2} + 4 [AD^{2} - AB^{2}]  [\cdot AD^{2} = AB^{2} + BD^{2}]$ $AC^{2} = AB^{2} + 4AD^{2} - 4AB^{2}$ |               |            |                |        |     |   |   |  |  |  |
|      |                                                                                                                                                                                           |               |            |                |        |     |   |   |  |  |  |
|      |                                                                                                                                                                                           |               |            |                |        |     |   |   |  |  |  |
|      |                                                                                                                                                                                           |               |            |                |        |     |   |   |  |  |  |
|      | AC                                                                                                                                                                                        | $C^2 = 4A^2$  | $D^2 - 3A$ | B <sup>2</sup> |        |     |   |   |  |  |  |
|      |                                                                                                                                                                                           |               |            | ******         | ****** | *** |   |   |  |  |  |
|      | HAPPINESS IS NOTHING MORE THAN GOOD HEALTH ANI                                                                                                                                            |               |            |                |        |     |   |   |  |  |  |
|      | A BAD MEMORY.                                                                                                                                                                             |               |            |                |        |     |   |   |  |  |  |