TARGET MATHEMATICS
THE EXCELLENCE KEY AGYAT GUPTA (M.Sc., M.Phil.)

## GENERAL INSTRUCTIONS :- <br> CODE:- AG-13 <br> 1. All questions are compulsory.

2. The question paper consists of 34 questions divided into four sections A,B,C and D. Section - A comprises of 8 question of 1 mark each. Section - B comprises of 6 questions of 2 marks each. Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 10 questions of 4 marks each.
3. Question numbers 1 to 8 in Sections - A are multiple choice questions where you are to select one correct option out of the given four.
4.There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four mark each. You have to attempt only one lf the alternatives in all such questions.
4. Use of calculator is not permitted.
5. Please check that this question paper contains 6 printed pages.

MATHEMATICS
Time : 3 to $31 / 4$ Hours

## CLASS X

(SA-1) Maximum Marks : 90

## SUMMATIVE ASSESSMENT -I (2013)

## SECTION A

## Q. 1 The number $\frac{3-\sqrt{3}}{3+\sqrt{3}}$ is

(A) rational
(B) irrational
(C) Both
(D) Can't say Ans. B ; after rationalisation $2-\sqrt{3}$
Q. 2 If $\sin 3 \theta=\cos \left(\theta-6^{0}\right)$, where ( $3 \theta$ ) and $\left(\theta-6^{0}\right)$ are both acute angles, then the value of $\theta$ is
(A) $18^{\circ}$ (B) $24^{\circ}$ (C) $36^{\circ}$ (D) $30^{\circ}$ Ans. B :
$90-3 \theta=\theta-6 \Rightarrow 4 \theta=96 ; \theta=24$
Q. $3 \quad x^{3}+2 x^{2}+a x+b$ is exactly divisible by $\left(x^{2}-1\right)$.Then the value of ' $a$ ' and ' $b$ ' are
(A) $\mathrm{a}=-1, \mathrm{~b}=-2$ (B) $\mathrm{a}=1, \mathrm{~b}=2$ (C) $\mathrm{a}=-1, \mathrm{~b}=2$ (D) $\mathrm{a}=1, \mathrm{~b}=-2$ Ans. a : $\mathrm{a}=-1 \mathrm{~b}=-2$
Q. 4 The median of the scores $13,23,12,18,26,19,14,25,11$ is
(A) 14 (B) 18 (C) 19 (D) 23 Ans. B :
Q. 5 If $\theta$ is acute and $\frac{\cos ^{2} \theta}{\cot ^{2} \theta-\cos ^{2} \theta}=3$, then $\theta=$
(A) $60^{\circ}$ (B) $30^{\circ}(\mathrm{C}) 90^{\circ}$ (D) $45^{\circ}$ Ans. A :
Q. 6 For what value of p does the system of equation
$2 x-p y=0,3 x+4 y=0$ has non zero solution?
(A) $\mathrm{p}=-6$
(B) $p=-\frac{8}{3}$ (C) $p=-\frac{2}{3}$ (D) $p=-\frac{4}{5}$ Ans. B :
Q. $7 \Delta A B C \sim \triangle P Q R$. If $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}$, then $\mathrm{PQ}+\mathrm{QR}=$
(A) 8 cm (B) 10 cm (C) 7.5 cm (D) 9 cm Ans. C :
Q. 8 If $x=2 \sin ^{2} \theta, y=2 \cos ^{2} \theta+1$ then the value of $x+y$ is
(A) 2
(B) 3
(C) $\frac{1}{2}$
(d) 1 Ans. b

## SECTION B

Q. 9 If one zero of polynomial $3 x^{2}=8 x+2 k+1$ is seven times the
other, then find the zeroes and value of k . Ans. $k=-\frac{5}{3}$
OR
Find all the zeros of the polynomial $f(x)=2 x^{4}-2 x^{3}-7 x^{2}+3 x+$ 6 , if two of its zeros are $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$.Sol. Since $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$ are zeros of $f(x)$. Therefore,
$\left(x+\sqrt{\frac{3}{2}}\right)\left(x-\sqrt{\frac{3}{2}}\right)=\left(x^{2}-\frac{3}{2}\right)=\frac{2 x^{2}-3}{2}$ or $2 x^{2}-3$ is a factor of

$$
2 x ^ { 2 } - 3 \longdiv { 2 x ^ { 4 } - 2 x ^ { 3 } - 7 x ^ { 2 } + 3 x + 6 }
$$

$$
\begin{aligned}
& \frac{2 x^{4} \mp 3 x^{2}}{-2 x^{3}-4 x^{2}+3 x+6} \\
& \mp 2 x^{3} \mp 3 x \\
& -4 x^{2}+6 \\
& \quad-4 x^{2}+6 \\
& +- \\
& +
\end{aligned}
$$

$7 x^{2}+3 x+6=\left(2 x^{2}-3\right)\left(x^{2}-x-2\right)=\left(2 x^{2}-3\right)(x-2)(x+1)$ $=2\left(x+\sqrt{\frac{3}{2}}\right)\left(x-\sqrt{\frac{3}{2}}\right)(x-2)(x+1)$ So, the zeros are
$-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, 2,-1$
Q. 10 Find the LCM of $2^{3} \times 3^{2} \times 5 \times 11,2^{4} \times 3^{4} \times 5^{2} \times 7$, and $2^{5} \times 3^{3} \times$ $5^{3} \times 7^{2} \times 11$.Ans. L.C.M. $=2^{5} \times 3^{4} \times 5^{3} \times 7^{2} \times 11$
Q. 11 Find the mode of the following distribution of marks obtained by 80 students : Ans. mode $=36.92$

| Marks <br> obtained | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Number of <br> students | 5 | 11 | 12 | 30 | 22 |


of DC. Ans. $\mathbf{D C}=\mathbf{8 ~ c m}$
Q. 13

Solve for x and $\mathrm{y}: ~ a x-b y=a^{2}-b^{2}, \frac{x}{a}+\frac{y}{b}=2$.
Ans. $x=a ; y=b$
Q. 14 Evaluate : $\cos \left(40^{\circ}+\theta\right)-\sin \left(50^{\circ}-\theta\right)+\frac{\cos ^{2} 40^{\circ}+\cos ^{2} 50^{\circ}}{\sin ^{2} 40^{\circ}+\sin ^{2} 50^{\circ}}$.

Ans. 1

## SECTION C

Q. 15 Prove that sum of the squares of the diagonals of a parallelogram is equal

|  | to sum of the squares of its sides. <br> OR <br> In a triangle $\mathrm{ABC}, \mathrm{D}$ is the mid-point of BC and $\mathrm{AE} \perp \mathrm{BC}$. Prove that : $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$ |
| :---: | :---: |
| Q. 16 | In a morning walk three persons step off together, their steps measure 80 $\mathrm{cm}, 85 \mathrm{~cm}$ and 90 cm respectively. What is the minimum distance each should walk so that they can cover the distance in complete steps ? <br> Ans.LCM of $80 \mathrm{~cm}, 85 \mathrm{~cm}, 90 \mathrm{~cm}$ ie $12240 \mathrm{~cm}=122 \mathrm{~m} 40 \mathrm{~cm}$ <br> OR <br> Show that cube of any positive integer is of the form $4 m$ or $4 m+1$ or $4 \mathrm{~m}+3$ where m is a positive integer. |
| Q | Prove that: $\sqrt{\frac{\sec A-1}{\sec A+1}}+\sqrt{\frac{\sec A+1}{\sec A-1}}=2 \cos e c A$ |
| Q. | Ritu can row downstream 20 km in 2 hrs . and upstream 4 km in 2 hrs . Find the speed of rowing in still water and the speed of the current. Ans. still water $=6 \mathrm{~km} / \mathrm{hr}$ speed of current $=4 \mathrm{~km} / \mathrm{hr}$ <br> OR <br> In a competitive examination, one mark is awarded for each correct answer while $1 / 2$ mark is deducted for each wrong answer. Sheela answered 120 question and got 90 marks. How many question did she answer correctly? Ans. 100 |
| Q. 19 | Mean of the following data is 21.5.Find the missing value ' k '. Ans. $\mathrm{K}=5$ |
|  | X 5 15 25 35 45 |
|  | f 6 4 3 k 2 |
| Q. 20 | The HCF \& LCM of two numbers are $33 \& 264$ respectively. When the first number is divided by 2 the quotient is 33 . Find the second number. |
| Q. 21 | Find the median of the following data : $5,17,23,14,29,11,43,13$, 53,36 . If 13,23 is replace by 72,49 . what will be the new median . |

ans; median $=20$ and new median $=65 / 2$ ie $=32.5$
Q. 22

In $\triangle A B C, A D \perp B C$ and $\mathrm{BD}=\frac{1}{3} C D$. Prove that
$2 C A^{2}=2 A B^{2}+B C^{2}$
Q. 23 In an equilateral triangle ABC , the side BC is trisected at D . Prove that 9 $\mathrm{AD}^{2}=7 \mathrm{AB}^{2}$ Sol. ABC be can equilateral triangle and D be point on

$A E \perp B C$, Join $A D . B E=E C$ (Altitude drown from any vertex of an equilateral triangle bisects the opposite side)So, $\mathrm{BE}=\mathrm{EC}=$ $\frac{B C}{2}$ In $\triangle A B C A B^{2}=A E^{2}+E B^{2} \ldots .(i) A D^{2}=A E^{2}+E D^{2} \ldots$ (ii)From (i) and (ii) $\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{ED}^{2}+\mathrm{EB}^{2} . \mathrm{AB}^{2}=\mathrm{AD}^{2}-\frac{\mathrm{BC}^{2}}{36}+\frac{\mathrm{BC}^{2}}{4}(\therefore \mathrm{BD}+$ $\left.\mathrm{DE} \quad=\frac{\mathrm{BC}}{2} \Rightarrow \frac{\mathrm{BC}}{3}+\mathrm{DE}=\frac{\mathrm{BC}}{2} \Rightarrow \mathrm{DE}=\frac{\mathrm{BC}}{6}\right) \mathrm{AB}^{2}+\frac{\mathrm{BC}^{2}}{36}-\frac{\mathrm{BC}^{2}}{4}=\mathrm{AD}^{2}$

$$
\left(\therefore \mathrm{EB}=\frac{\mathrm{BC}}{2}\right) \quad \mathrm{AB}^{2}+\frac{\mathrm{AB}^{2}}{36}-\frac{\mathrm{AB}^{2}}{4}=\mathrm{AD}^{2}
$$

$$
\begin{aligned}
& (\therefore \mathrm{AB}=\mathrm{BC}) \frac{36 A B^{2}+A B^{2}-9 A B^{2}}{36}=A D^{2} \Rightarrow \frac{28 A B^{2}}{36}=A D^{2} \\
& 7 \mathrm{AB}^{2}=9 \mathrm{AD}^{2}
\end{aligned}
$$

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

| Q.24 | If one zero of the polynomial <br> reciprocal of other, then prove that $k=2$. |
| :--- | :--- |
| SECTION D |  |

Q. 26 Draw the graphs of the equations $4 x-y=4 \& 4 x+y=12$. Deter mine the vertices of the triangle formed by the lines representing these equations and the x -axils. Shade the triangular region so formed. Also find its area .Solution: - Let us take the equation $4 x-y=4$

| $X$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $Y$ | -4 | 0 | 4 |
| $Y$ | = We plot the points $(0$, |  |  | $-4),(1,0)$ and $(2,4)$ on the graph paper and join them. We get a straight line. Now we take the line $A B . \quad 4 x+y=121$


| $X$ | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| $Y$ | 4 | 0 | -4 | We plot the points $(2,4)$

$(3,0)$ and $(4,-4)$ on the same graph paper. on joining them we get a line $C D$ which intersect previous line $A B$. at $P(2,4)$

$A B$ intersects the $x$-axis at $(1,0)$ and $C D$ intersects the $x$-axis at $(3$, $0)$ Hence the vertices of the triangle PBD are $(2,4),(1,0)$ and $(3,0)$ The required region is shaded.Area $=\frac{1}{2} \times 2 \times 4=4$ sq unit .
Q. 27 Show that: $\frac{\tan ^{3} \theta}{1+\tan ^{2} \theta}+\frac{\cot ^{3} \theta}{1+\cot ^{2} \theta}=\sec \theta \operatorname{cosec} \theta-2 \sin \theta \cos \theta$ OR
Show that : $\frac{1+\cos \theta+\sin \theta}{1+\cos \theta-\sin \theta}=\frac{1+\sin \theta}{\cos \theta}$.
Q. 28 Prove that $(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$.
Q. 29 Determine the value of k so that the following linear equations have no solution: $(3 k+1) x+3 y-2=0$ \&

$$
\left(k^{2}+1\right) x+(k-2) y-5=0 . \text { Solution:- }
$$

$$
\frac{a_{1}}{a_{2}}=\frac{3 k+1}{k^{2}+1}, \frac{b_{1}}{b_{2}}=\frac{3}{k-2}, \frac{c_{1}}{c_{2}}=\frac{2}{5} \text { For no solution, } \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c}
$$

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)
$\frac{3 k+1}{k^{2}+1}=\frac{3}{k-2} \neq \frac{2}{5}$ Now, $\frac{3 k+1}{k^{2}+1}=\frac{3}{k-2}$
Or, $(\mathrm{k}-2)(3 \mathrm{k}+2)=3\left(\mathrm{k}^{2}+1\right) \mathrm{Or}, 3 \mathrm{k}^{2}-5 \mathrm{k}-2=3 \mathrm{k}^{2}+3 \mathrm{Or},-5 \mathrm{k}=5$ Or, k=-1
Q. 30 ABC is a right triangle, right-angled at C . Let $\mathrm{BC}=\mathrm{a}, \mathrm{CA} \mathrm{b}, \mathrm{AB}=\mathrm{c}$ and let $p$ be the length of perpendicular Form $C$ on $A B$, prove that (i) $\mathrm{cp}=\mathrm{ab}$ (ii) $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$.Sol. Let $C D \perp A B$. Then $C D=\mathrm{p}$


$$
\frac{1}{2}(\mathrm{AB} \times \mathrm{CD})=\frac{1}{2} \mathrm{cp} \quad \text { Also, Area of } \Delta \mathrm{ABC}=\frac{1}{2}(\mathrm{BC} \times \mathrm{AC})=
$$ $\frac{1}{2} a b$

$\therefore \quad \frac{1}{2} c P=\frac{1}{2} a b$
$\Rightarrow \quad C P=A B$.
(ii) Since $\triangle \mathrm{ABC}$ is a right triangle, right angled at C .
$\Rightarrow \quad c^{2}=a . .+b^{2} \Rightarrow\left(\frac{a b}{p}\right)^{2}=a^{2}+b^{2}\left[\because c p=a b \Rightarrow c=\frac{a b}{p}\right]$

$$
\begin{aligned}
& \quad \Rightarrow \quad \frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{p}^{2}}=\mathrm{a}^{2}+\mathrm{b}^{2} \Rightarrow \quad \frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{a}^{2}} \Rightarrow \\
& \frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}} \\
& \text { Q. } 3 \mathbf{I f} 2 \cos \theta-\sin \theta=x \& \cos \theta-3 \sin \theta=y \text {. prove that } \\
& 2 x^{2}+y^{2}-2 x y=5 \text { ANS: } \\
& 2 \cos \theta-\sin \theta=x \\
& \cos \theta-3 \sin \theta=y \\
& (x-y)^{2}=x^{2}-2 x y+y^{2} \\
& x^{2}-2 x y+y^{2}=\left(\cos \theta+2 \sin ^{2} \theta\right)^{2} \\
& =\cos ^{2} \theta+4 \sin ^{2} \theta+4 \cos \theta \sin \theta \\
& =1+3 \sin ^{2} \theta+4 \cos \theta \sin \theta
\end{aligned}
$$

## Adding $x^{2}$ on both sides

$$
\begin{aligned}
& x^{2}-2 x y+y^{2}+x^{2}=1+3 \sin ^{2} \theta+4 \cos \theta \sin \theta+(2 \cos \theta-\sin \theta)^{2} \\
& \quad 2 x^{2}-2 x y+y^{2}=1+3 \sin ^{2} \theta+4 \cos \theta \sin \theta+4 \cos ^{2} \theta+\sin ^{2} \theta-4 \cos \theta \sin \theta \\
& \quad=4 \sin ^{2} \theta+4 \cos ^{2} \theta+1
\end{aligned}
$$

$$
=5
$$

$$
=\mathrm{RHS}
$$

Q. 32 Show that one and only one out of $\mathrm{n}, \mathrm{n}+3, \mathrm{n}+6, \mathrm{n}+9$ is divisible by 4 , where n is any positive integer

## OR

Prove that the product of three consecutive positive integer is divisible by 6 .


